
Software Engineering for Business Information Systems (sebis) 
Department of Informatics
Technische Universität München, Germany

wwwmatthes.in.tum.de

REST-based Data Integration Services for 
Software Engineering Domain
Fridolin Koch, Bachelor’s Thesis – Final Presentation



§ Existing barrier in the adoption of software architecture knowledge 
management (SAKM) systems
§ Many different software architecture life cycle tools produce data in 

different formats (Enterprise Architect, Excel, Jira, etc.)
§ Repeatedly integrating this data into such a system can be a 

challenging and tedious task
§ In general the task of data integration is addressed by Extract-

Transform-Load-Tool (ETL-Tool)
§ Wide range of commercial and open source ETL-Tool available
§ But: Mostly tailored to generic use cases à Difficult to embedded in 

existing domain specific tools

Motivation

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 2



Research questions

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 3

RQ1
What are the use cases of data integration services?

RQ2
What are the features of the existing data integration service 
providers?

RQ3
How to design a framework for the data integration services 
in software engineering domain?



Two roles where identified
• Developers (DEVs) extend the application with custom services
• Software Architects (SAs) use the system to define, execute and monitor 

data integration pipelines
DEVs

• Implement services which load or extract data
• Define configuration parameters
• Expose the domain model of the source or target system
• Use the graphical user interface (GUI) to test their implementation

SAs
• Provide configuration parameters using the GUI
• Explore the data model of a service within the GUI
• Create mapping between a source and a target system
• Define pipelines
• Invoke the execution of defined pipelines
• Check system logs to verify the executed pipelines

RQ1: Use cases

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 4



Tools identified using web search
§ Apatar
§ CloverETL
§ IBM InfoSphere DataStage
§ Informatica

For the analysis open-source and partial open-source tools where selected

Identified features
§ Visual pipeline builder
§ Generic use case
§ Support many connectors

Identified traits
§ Focus on data analyst
§ Focus is not extensibility!

RQ2: Existing data integration tools

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 5

§ Pentaho
§ RhinoETL
§ Talend Open Studio for Data Integration
§ UnifiedViews



Technology stack

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 6

MongoDB Express.js Angular.js Node.js



Top-level application architecture

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 7



Storage layer

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 8

<<Interface>>

IServiceConfig

+name: string
+service: string
+config: any
+created: Date
+updated: Date

<<Interface>>

mongoose.Document

<<Interface>>

IMappingGroup

+toPrefix: string
+properties: Array<IPropertyMapping>

<<Interface>>

IPropertyMapping

+fromPath: string
+toPath: string

+uniqueKey: boolean
+foreignKey: string

+primaryKey: boolean

<<Interface>>

IMapping

+name: string

+extractorService: string
+loaderService: string

+created: Date
+updated: Date

+groups: Array<IMappingGroup>

1

0..*

1

0..*

<<Interface>>

IPipeline

+name: string
+extractorConfig: IServiceConfig
+loaderConfig: IServiceConfig

+created: Date
+updated: Date

*

1..*

*

1..*
-mitgliedsName

-mitgliedsName

<<Interface>>

IPipelineExecution

+pipeline: IPipeline
+log: Array<ILogMessage>
+started: Date
+finished: Date

1

0..1

+executions: Array<IPipelineExecution>

<<Interface>>

ILogMessage

+level: string
+message: string
+context: any

1

0..*



The software architect (SA) uses the application to transform data
1. The SA selects the extractor and loader service
2. For both services SA may create a new configuration or use an existing 

configuration
3. The SA creates a mapping between the two services/system
4. A pipeline is composed by the SA, by selecting a loader & extractor 

configuration and a mapping
5. The SA executes the composed pipeline
6. The SA verifies the correctness of the execution by reviewing the logs

Software architect workflow

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 9

Select 
Loader &
Extractor

Create 
Configuration 
for Services

Create 
Mapping

Create 
Pipeline

Execute 
Pipeline Check Logs



Data transformation I 

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 10

SA API 
Process RabbitMQ Worker Process MongoDB

execute pipeline

find pipeline configuration

pipeline configuration

schedule execution

acknowledge

acknowledge

notify

acknowledge

insert pipeline execution entry

Extractor Loader

prepare prepare

prepared prepared

load

extract

receive data

transform data

Loop

[extractor has data]

save log messages



Data transformation II

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 11

<<Interface>>

IMappingGroup

+toPrefix: string
+properties: Array<IPropertyMapping>

<<Interface>>

IPropertyMapping

+fromPath: string
+toPath: string

+uniqueKey: boolean
+foreignKey: string

+primaryKey: boolean

<<Interface>>

IMapping

+name: string
+extractorService: string
+loaderService: string

+created: Date
+updated: Date

+groups: Array<IMappingGroup>

1

0..*

1

0..*

§ Mapping is based on paths, which are similar to 
XPath but simpler. 

Example: /projects/issues/author 
• Refers to all authors of all issues of all projects
• Automatic differentiation between objects and 

arrays

§ toPrefix is the placement path in the target object

§ uniqueKey indicates if the transformer should be 
aware of duplicates (only works with arrays)

§ foreignKey is a placement information for the parent 
mapping group, comparable to a simple SQL 
WHERE statement

§ primaryKey is a flag indicating if the transformer will 
merge the target object, if mapped multiple times, to 
an object. 



Data transformation III

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 12

primaryKey example



Data transformation IV

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 13

1. Build a tree structure from the extracted data
2. Make an object instance using the target systems JSON-Schema
3. Extract data from from the source object using the Mapping
4. Find foreignKey Mappings
5. Depending if foreignKey Mappings were found, the algorithm decides how to 

insert the extracted data into the target object.

Build object 
graph

1

Source object

Instantiate 
structure

Target Schema

2
Extract from 

source 
object

Object graph
Mapping trees

3
Find foreign 

key 
Mappings

Extracted Values

4
Insert into 

target object

Extracted Values 
Mapping trees

5



Top-level application architecture

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 14



The developer conducts the following steps create a new service:
1. Decide if the services should extract data from a system or if the service 

should load data into a system
2. Describe the provided/expected data using JSON-Schema
3. Define & describe configuration parameters using JSON-Schema
4. Implement the logic for extracting / loading the data
5. Test the implemented service using unit tests or the client application

Developer workflow

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 15

Loader vs. 
Extractor

Describe 
Data

Define & 
Describe 

Configuration
Implement 

logic Test service



Service extension layer

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 16

• The server application provides a predefined set of interfaces which the 
developer has to implement

• node.js stream API is used for the data flow between the services and the 
framework

• The application defines two different types of extractor services
• Active extractors fetch all data self-sufficient (e.g. from a REST-API / RDMS)
• Passive extractors need additional data at runtime to extract data

<<Interface>>

IService

+getName():
+getConfiguration(): IServiceConfiguration

<<Interface>>

IServiceConfiguration

+getSchema(): Schema
+store(): Object
+load(config: Object): void+setConfiguration(config: IServiceConfiguation): void

+getSchema(): ISchema
+prepare(context: IPipelineContext, logger: ILogger): Promise<any>

<<Interface>>

IExtractorService

+extract(): stream.Readable
+getType(): ExtractorServiceType

<<Enumeration>>

ExtractorServiceType

Active
Passive

<<Interface>>

ILoaderService

+load(): stream.Writable

<<Interface>>

IPipelineContext

+pipeline: IPipeline
+inputData: Array<Buffer>



Evaluation

Set up
§ 2 research assistants (RA) from SEBIS
§ API documentation and “getting started” guide provided upfront
§ Task: implement an extractor and a loader service using provided service 

extension layer.

Need for
§ Better documentation about mapping format (-)
§ Testing capabilities for service extension layer (Unit-Test, Mock-Objects) (-)
§ Dynamic service configuration capabilities instead of static JSON-Schema (x)

• Choose configuration value from a list of values
• Depending values e.g. 1) Select Database 2) Select Table

§ JSON-Schema dependent on dynamic configuration values (+)
• Each table has a different schema

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 17

Server application



Evaluation

Set up
§ 2 research assistants (RA) from SEBIS
§ Open interviews
§ Focus on usability, not implementation

Need for
§ Improved navigation structure matching process of creating new pipelines (+)
§ Improved mapping view to support dynamic schemata (+)

• Select box with service’s configurations
§ Extended the configuration form to support (x):

• Custom JSON-Schema types
• Dynamic (AJAX) loading of available configuration values (Select from values)
• Linked input fields (Schema ↔ Tables)

§ Improved usability of the mapping form by (x):
• Enabling semantic validation
• Prefill the mapping form with required properties of the JSON-Schema
• Visually connect properties
• Indicate which properties are already mapped in the schema visualizer

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 18

Client application



Conclusion

© sebisFridolin Koch, Bachelor’s Thesis – Final Presentation 19

§ Roles and corresponding UCs were elicited 
§ Existing data integration tools were analysed
§ REST-based server application with service extension layer were implemented
§ Generic client application supporting configuration of pipelines were created
§ Evaluation of both server and client application were performed

Future work
§ Updating data, creating associations and orphan removal has to be handled by 

each service 
à Implement generic logic and provide it through the application’s core

§ Advanced mapping operations like aggregation or partitioning 
à Extend with DSL or JavaScript functions that can be applied to property 
mappings



Technische Universität München
Department of Informatics
Chair of Software Engineering for 
Business Information Systems

Boltzmannstraße 3
85748 Garching bei München

Tel +49.89.289.
Fax +49.89.289.17136

wwwmatthes.in.tum.de

Fridolin Koch

frido.koch@tum.de

Thank you for your attention.


